Module 3 – Ranges, Calendars, Swing Predictor, Gann Emblem

Know Your Time and Price Ranges (Cycles) – Trade with Confidence

Traders can find repeating time cycles and to cluster these dates with Calendars. This makes it easy to see when a number of cycles are repeating within the same time frame.

Maintain a Day Count Calendar for important Swings in a Market. This shows the trading time cycles from an important swing to a date, typically one month ahead in time. The Trader also specifies which cycles are to be highlighted on the Calendar making it easy to see when cycles are repeating.

GATE maintains a Monthly Calendar which includes much of the information in the Day Count Calendar but also includes information about major ABC setups that are still active so that the time between Points A and B or C can be tracked in the Calendar. The monthly Calendar also includes the ability to include Dairy entries.

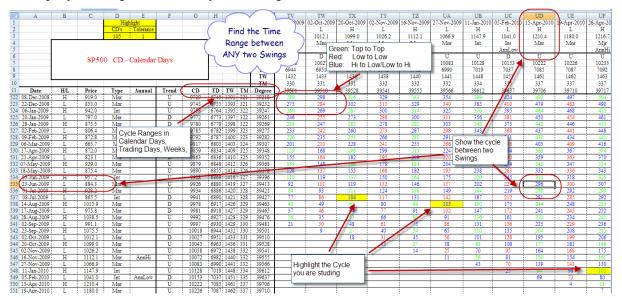
Traders can find time cycles that have occurred frequently in the past. Through the use of "filters" the Trader can instantly see which are the top ten or twenty most frequently occurring time frames.

Having identified a time frame that occurs frequently GATE can then extract all the Swing Points with that time cycle count.

The cycles GATE extracts are for Trading Days, Calendar Days, Weeks, Degrees, Price and Ticks.

GATE will construct Solar Degree Reference tables which are based on 30 degrees, 45 degrees, 60 degrees and 90 degrees. Previous Swing Tops and Bottoms will be highlighted on these tables making it easy to see when past tops or bottoms align on a specific degree cycle.

GATE calculates future and past dates using using the 360 degree cycle (full $\frac{1}{2}$ $\frac{1}{4}$ and other fractions) and show swings these cycles going backwards and forwards.


Module 3 covers the following functionality:

- GATE creates a Day Count Calendar and highlights selected time cycles making it very easy and convenient to see time clusters as they occur during the month.
- GATE highlights when a swing is made on the exact square of a number (for both Trading Days and Calendar Days)
- GATE creates a Monthly Calendar which highlights important future dates, degrees from Swings, repeating time frames and any Diary entries you enter.
- GATE extracts time ranges and counts the number of occurrences since the first trading day of that Market. These are weighted and sorted for further analysis.
- Repeating Time and Price matrix GATE creates a report that will include 50%, 100% and 200% past occurrences of selected Time Counts and Price Ranges.
- Cycle Time Predictor use past time cycles to predict when future swings may occur.
- Degree Reference Tables line up swings that occur on a consistent time cycle
- GATE creates a Trading Day, Calendar Day and Degrees lookup table to easily extract the time frame between any two Swings.
- Date Clustering through the use of a Calendar

Calendar (Future Dates) with Day Counts and Cycle Clusters

В	L	U	IN.	U		19	n	
SI	P500		Tue 04-May-2010	Wed 05-May-2010	Thu 06-May-2010	Fri 07-May-2010	Sat 08-May-2010	
	y- 2 010		10241 / 7098 1464 / 338 / 39725	10242 / 7099 1464 / 338 / 397 Green Sni	10243 / 7100 1464 / 338 / 39727	10244 / 7101 1464 / 338 / 39728	10245 / 7101 1464 / 338 / 39729	
21-Nov-2008 9712/6735	739.0 1388	Int L	CD:529 TD:363	CD:530 TD:364	CD:531 TD:365 6 (4/2/0) 468	CD:532 TD:366 7 (4/3/0) 190	CD:533 TD:366 4 (2/2/0) 3700	
	Da	ate (F	uture)					
06-Jan-2009	94		TD:334	CD:484 TD:335	CD:485 TD:336	CD:486 T	337	
9758/6764	1395/322	39247	10 (6/4/0) 3056	3 (1/2/0) 9	Deg(1x360) +120	Annav	ersaries 6	
06-Mar-2009	665.7	MjrL	CD:424 TD:293	CD:425 TD:294	CD:426 TD:295	CD:427 TD:296	CD:428 TD:296	
9817/6805	1403/324		me Cycles Clus	sters	Deg(1x360) +60 6 (3/3/0) 1671	8 (3/5/0) 358	4 (3/1/0) 999	
07-May-2009	929.0	М		D-251	CD:364 TD:252	CD:365 TD:253	CD:366 TD:253	
9879/6848	1412/326	39368	15 (4/1/10) 190	17 (4/3/10) 22	25 (214122) 358	Deg(1±360) 20 (2/3/15) 251	16 (6/3/7) 1439	
18-May-2009	875.4	Mnr L	CD:351 TD:243	CD:352 TD:244	CD:353 TD:245	CD:354 TD:246	CD:355 TD:246	
9890/6855	1414/326	39378	25 (6/2/17) 314	7 (1/2/4) 1075	11 (0/4/7) 369	11 (3/2/6) 165	23 (5/5/13) 1049	
05-Jun-2009	957.2	Int H	CD:333 TD:230	CD:334 TD:231	CD:335 TD:232	CD:336 TD:233	CD:337 TD:233	
9908/6868	1416/327	39396	10 (1/2/7) 203	Deg 330 14 (3/1/10) 665	28 (2/3/23) 322	CD (2±168) 29 (4/2/23) 22	18 (3/2/13) 314	
23-Jun-2009	884.3	Mnr L	CD:315 TD:218	CD:316 TD:219	CD:317 TD:220	CD:318 TD:221	CD:319 TD:221	
9926/6880	1419/327	39413	29 (3/5/21) 190	18 (3/4/11) 203	25 (3/5/17) 468	Deg 315 14 (0/2/12) 22	15 (3/0/12) 385	
01-Jul-2009 9934/6886	928.2 1420/328	Mnr H 39421	CD:307 TD:212 32 (4/3/25) 322	CD:308 TD:213 26 (4/7/15) 385	CD:309 TD:214 17 (1/1/15) 389	CD:310 TD:215 21 (2/3/16) 251	CD:311 TD:215 17 (3/2/12) 120	
SqTD:83			Time (Cycles Clusters	(168)			
08-Jul-2009	865.5	Int L	CD:300 1		TD:210	CD:303 TD:211	CD:304 TD:211	
9941/6890 SqTD:83	1421/328	39427	31 (5/5/21) 22	33 (4/5/24) 251	Qeg 300 22 (312/17) 203	17 (3/2/12) 165	18 (2/5/11) 389	
14-Aug-2009	1015.9	Mnr H	CD:263 TD:181	CD:264 TD:182	CD:265 10:183	CD:266 TD:184	CD:267 TD:184	
9978/6917	1426/329	39463	17 (0/3/14) 256	19 (3/6/10) 1184	22 (2/0/20) 203	42 (4/9/29) 165	30 (0/6/24) 629	
17-Aug-2009	975.8	Mnr L	CD:260 TD:180	CD:261 TD:181	CD:262 TD:182	CD:263 TD:183	CD:264 TD:183	
9981/6918	1427/329	39465	28 (3/2/23) 203	20 (4/5/11) 1944	27 (4/4/19) 389	17 (0/3/14) 256	19 (3/6/10) 1184	
28-Aug-2009	1038.5	Mnr H	CD:249 TD:171	CD:250 TD:172	CD:251 TD:173	CD:252 TD:174	CD:253 TD:174	
9992/6927	1428/329	39476	26 (5/7/14) 256	26 (5/4/17) 616	28 (5/2/21) 505	CD (150%±168) 37 (2/8/27) 267	28 (2/5/21) 203	
02-Sep-2009	991.1	Mnr L	CD:244 TD:168	CD:245 TD:169	CD:246 TD:170	CD:247 TD:171	CD:248 TD:171	
9997/6930 SqCD:100	1429/330	39481	32 (4/4/24) 26	43 (11/4/28) 22	21 (0/6/15) 230	24 (2/5/17) 221	17 (1/3/13) 22	
23-Sep-2009	1075.5	Mnr H	CD:223 TD:154	CD:224 TD:155	CD:225 TD:156	CD:226 TD:157	CD:227 TD:157	
10018/6944	1432/330	39501	29 (4/4/21) 267	Deg 225 39 (6/6/27) 165	28 (2/4/22) 26	34 (2/7/25) 230	14 (1/3/10) 389	
02-Oct-2009	1012.1	Mnr L	CD:214 TD:147	CD:215 TD:148	CD:216 TD:149	CD:217 TD:150	CD:218 TD:150	
10027/6951	1433/331	39510	17 (2/4/11) 322	26 (6/4/16) 651	28 (2/3/23) 764	31 (1/5/25) 251	31 (4/3/24) 756	
20-Oct-2009	1099.0	Mnr H	CD:196 TD:135	CD:197 TD:136	CD:198 TD:137	CD:199 TD:138	CD:200 TD:138	
				·- · - · - · ·				

Lookup Cycle/Ranges between any two Swings

Find Cycles in the Market with Reference Charts that align Swings that follow a 30 degree or 45 degree or 60 degree or 90 degree cycles

Find Cycles in the Market with Reference Charts that align Swings that follow a 30 degree or 45 degree or 60 degree or 90 degree cycles

Find repeating Cycles (Calendar Days, Trading Days, Degrees, Price)

4	A	В	С	ע	E	F	G	Н	1	J	K	L	M	N	O
		S	P500 (CD - Ca	lendar I	Days					SP500 '	TD - Tr	ading D	ays	
	Tolerance								Tolerance						
	Cycle	Zer	1 🔻	2 🔽	3 🔻	4 🔻	W/Fac		Cycle	Zer(▼	1 🔽	2 🔽	3 🔻	4 🔽	W/Fac
4	40	22	82	151	213	289	1216.7		40	52	154	244	331	427	2659.5
5	41	29	101	165	215	271	1/122 1		//1	43	146	245	335	435	2523
5	(42	50	112	165	223		ber of times a cred in the pas		le has	51	134	237	349	432	3051.5
7	43	33	114	170	216	204	1/9/.4		45	40	142	238	334	439	2769.3
8	44	31	91	165	231	285	1529.7		44	51	144	239	328	424	2346.8
9	45	27	82	152	234	315	1751.1		45	53	148	234	329	413	1669.6
0	46	24	88	151	236	326	1535	ι.	46	44	143	238	319	414	1924
1	47	Most freque	nt 93				unt 42 - has le past (112	L	47	46	134	228	323	414	2147
2	48	repeating	L21	18				L	48	44	131	219	323	416	2172.1
3	49	cycles are	L24	194	238	286	1521.3		49	41	129	226	312	422	2456.7
4	50	40	125				unt 56 - has	L	50	44	136	222	325	412	2680.4
5	51	33	93	16 °	ccuured 64	times in th	e past (134	L	51	51	137	235	322	413	2795.5
5	52	20	74	143	229	323	1424.7	ď.	52	42	150	237	323	422	2674.8
7	53	21	70	1/57	241	329	1526.1		53	57	142	238	337	421	2541.1
8	54	29 👆	84	168	237	305	1390.7		54	43	145	242	336	429	2116.7
9	55_	34	127	184	232	282	2218.7		55	45	143	243	334	427	1732.7
C	(56	64	134	191	229	269	2479.6		56	55	143	235	334	417	1613
1	57	36	128	179	228	281	2450.1		57	43	147	234	318	426	2375.5
2	58	28	81	165	231	305	1488.7		58	49	134	230	326	411	3033.4
3	59	17	65	133	242	319	1285.4		59	42	132	226	323	417	3117.5
4	60	20	69	142	221	329	1240.9		60	41	134	225	317	423	2794.4
5	61	32	97	157	229	286	1559.2		61	51	134	225	325	419	2535.1
5	62	45	120	184	222	272	2109.5		62	42	142	234	327	425	3286.2
7	63	43	132	185	227	271	2348		63	49	142	244	334	407	3351.8
8	64	44	108	175	234	284	1648.5		64	51	151	242	324	412	3026.1
9	65	21	87	157	232	309	924.3		65	51	151	231	320	407	2394
О	66	22	70	144	232	314	912.1		66	49	131	229	314	406	2077.3
1	67	27	79	145	226	304	1234.8		67	31	127	214	315	413	2186.4
2	68	30	102	161	217	289	1837.2		68	47	114	213	313	410	1834.8
3	69	45	112	174	224	270	1779.2		69	36	133	213	308	408	2480.3
4	70	37	117	175	227	267	1836.9		70	50	135	228	308	407	2544.4
5	71	35	100	170	218	269	1763.6		71	49	145	230	327	410	2766.2
c	72	20	00	1/12	212	200	2025 5		72	16	1///	244	ວວາ	116	2502.9

Easy to Use Data Filters to ONLY show the most frequently repeating cycles

SP500 CD - Calendar Days											
	Tolerance										
Cycle	Zerda	1 🔽	2 🔽	3 🔻	4 🔽	W/Fac -					
49	52	124	194	238	286	1521.3					
56	64	134	191	229	269	2479.6					
77	51	138	183	229	QF QF	2246.5					
91	55	127	173		sy to use F						
105	56	137	185		e most						
147	52	132	178	23	equent repe	sating					
168	53	134	190	233	285	2157					
175	53	118	178	230	282	2072.7					
245	59	115	178	224	275	2087.5					
266	58	133	190	241	287	1885.2					
280	53	111	172	217	271	1315.1					
287	52	119	177	227	278	1507.3					
315	54	123	181	225	283	1586.4					
336	51	126	175	219	275	1633					
343	65	128	179	246	290	1865.2					
455	53	113	174	222	264	1814.9					
462	54	130	185	236	293	2372.2					
518	54	126	175	236	280	1621.7					
546	59	127	170	218	268	2638.2					
554	52	124	180	229	287	2212.7					
560	52	99	163	220	260	1470.5					
609	54	131	178	231	283	1658.7					
659	52	121	196	243	286	1273.7					
763	51	108	157	199	250	2621					
812	61	117	174	237	278	1634.1					
896	51	120	165	214	258	1978.9					
1015	52	107	163	210	255	1501.2					
1183	55	124	172	212	253	2156.8					
1239	51	134	174	213	257	1691.1					
1295	55	108	162	204	248	1581.2					
2107	51	96	136	180	218	1794.9					